Letters to the Editor

Non-resonant Loudspeaker Enclosure

SINCE writing the article on the non-resonant loudspeaker, I have been examining further the performance of acoustic absorbents. Of those that are readily available, kapok is about the best but is not up to the performance of long wool. If the kapok is very well teased out then its properties are quite good. Unfortunately however it gradually compacts with use and the acoustic performance suffers accordingly. It may be possible to support it with wire netting, but this in turn can give resonance troubles.

The short fibre wool mentioned originally is very uncritical and cotton wool, kapok, or any usual cushion stuffing material is quite suitable. The purpose is only that of mid-frequency absorption and this is easily done by most textile materials.

ARTHUR R. BAILEY
Bradford

IT was particularly interesting to read Dr. A. R. Bailey's article describing a non-resonant loudspeaker enclosure, using a transmission line as a load. I would agree entirely with his contention that it is difficult to design a conventional reflex cabinet which is devoid of boom when reproducing the double bass or one which does not produce objectionable coloration of orchestral bass transients. However, I have established that it is possible to remove this defect from the conventional bass reflex cabinet by filling the interior of the cabinet with a fibrous material which provides a resistive load to the cone at low frequencies.

This system also becomes virtually non-resonant and was named a resistive reflex cabinet. The principle was used commercially early in 1962 and was the subject of a patent application on my behalf in May 1961. It is not unlikely that the subjective impression of music reproduced by means of a resistive reflex cabinet would compare favourably with Dr. Bailey's system, although their design concepts are clearly different.

Further research and development has established that reflex cabinets of only 1 ft³ can be made virtually non-resonant in the frequency range above 30 c/s. The bass quality is life-like and there is an absence of boom or chestiness in speech. As a result of further research I have established that the amplifier stability margin at the bass resonance frequency is more satisfactory with such a loudspeaker, and that the transient response of the amplifier and loudspeaker in tandem is well damped. Undoubtedly Dr. Bailey's system possesses the same virtue. It is perhaps strange that speech should sound coloured when the main system resonance is around 40 to 50 c/s. This phenomenon appears to be due to the fact that the d.c. component of the distortion produced in the amplifier appears as a pulse when there is a rapid change of signal level unless the feedback loop is d.c. coupled throughout or has a very long time constant. This internally generated pulse excites the transient response of the amplifier speaker combination and gives rise not only to boomy speech and music, but to excitation of speaker cone resonances as well.

It would seem then that those people who maintain that no two amplifier-speaker combinations should alike are probably right after all.

The transient testing procedures adopted by Dr. Bailey undoubtedly show up the spurious coloration of an enclosure very well.

Another alternative method which I have found useful is to apply a step function to the speech coil from a lead-acid battery by means of a mercury switch. The latter produces very fast rise times without contact effects. Any spurious coloration is revealed outdoors or in an anechoic chamber. It is by the same process possible to identify whether the loudspeaker or room acoustics are producing unsatisfactory bass response.

J. R. OGLIVIE
Sevenoaks, Kent.

The author replies:

I was very interested to read Mr. Ogilvie's comments with regard to loudspeaker systems. There are, however, one or two points that I would like to comment on.

Firstly, there is the perennial problem of obtaining the best possible performance from small loudspeaker enclosures. This has always been a difficult requirement due to diffraction and other effects. I would agree with Mr. Ogilvie that it is possible to make a small bass reflex cabinet virtually non-resonant, but I have always found that the small port size necessary for a low Helmholtz resonance gives very little benefit unless the cabinet is very resonant. If he has indeed solved the problem, then there will be many people grateful to him.

I would be interested to know the method of damping that Mr. Ogilvie uses, as all that I have tried in small systems either put up the effective stiffness of the enclosed air to an unacceptable value, or alternatively cause distortion due to the non-linear air friction effects. These same shortcomings exist in the damping materials used in the now popular closed-box systems. Too much stuffing in a bookshelf speaker can make it sound terrible.

Regarding the effect of resonant speaker systems on their driving amplifiers; I will agree that the speaker impedance can rise steeply at resonance peaks, but this should not upset any reasonable amplifier except perhaps under overload conditions. A good amplifier should give a satisfactory transient response at the bass end even with an open-circuit as a load. Overloads on output voltage levels should also not be capable of seriously upsetting the amplifier, irrespective of the output load conditions. Any high-fidelity amplifier worthy of that name should not be upset by load conditions to an audible degree, but then I would agree that there are some amplifiers that are not as good as their title suggests.

Regarding the coloration of speech by resonant speaker systems, I feel that Mr. Ogilvie is being confused between the lowest continuous tone that can be sung and the complex components of speech. The explosive components of speech have constituents that extend below the audible spectrum, these being easily isolated by a third-octave band filter. It is these components that are subjected to the bass resonance frequency of cabinets and speakers and cause the resulting coloration.

I am rather puzzled by the reference to
wavelengths corresponding to v_0 and v_1.

But $v = \frac{E}{\rho}$, where E is the elasticity of the propagating medium and ρ its density.

Hence $\lambda_0 = \frac{\lambda_1}{\sqrt{E_0/E_1}} \sqrt{\rho_0/\rho_1}$, where λ_0, E_0, and ρ_0 correspond to free-air conditions and E_1 and ρ_1 correspond to those in the filled enclosure.

With two assumptions, we can simplify this expression and relate it approximately to the amount of material added to the enclosure.

Firstly, it appears reasonable to assume that with a loosely packed filling, little air will be displaced. Also the fibres are themselves relatively incompressible compared with the remaining air. We can therefore say $\frac{E_0}{E_1} = 1$ approximately since we can expect little change in the elasticity due to the filling.

Secondly, it seems quite probable that, for frequencies where there is little attenuation in the filled line, the filling, being highly compliant, will respond to the air movement, and its mass will effectively add to that of the air. Thus the density of the propagating medium will be higher than that of air, and to a fairly close approximation, can be assumed to be the density of air plus the filling rate.

The expression given above now reduces to

$$\frac{\lambda_0}{\lambda_1} = \sqrt{\frac{\rho_0}{\rho_1}} \sqrt{\frac{\rho_0}{\rho_1}} \frac{\rho_0}{\rho_1}$$

where ρ_0 is the filling rate.

It would appear that the half-wavelength resonance of Dr. Bailey's enclosure occurs at 30 c/s corresponding to a free air wavelength of 36ft. But the wavelength corresponding to the unfilled enclosure is $2 \times 7 = 14$ft.

Hence $\lambda_0 = 36$ft, $\lambda_1 = 14$ft., and $\rho_0 = 6/6 \rho_0 = 0.5$ lb/ft2, taking $\rho_0 = 0.075$ lb/ft2 at room temperature.

This means that the filling must be added at a rate of 0.425 lb/ft2 or 1 lb to every 2.32 of enclosure, which is within the range recommended by Dr. Bailey.

It is interesting to note that the line can be tuned to the required resonance by addition or subtraction of filling; this was always a difficulty with the simple labyrinth, since the fundamental resonance of the system changes with a change of line length, and "cut and try" could be expensive on timber. Furthermore, the use of other media is indicated since it is the weight added which is important.

Provided that the low-pass characteristics can be correctly maintained, higher packing densities could be used to reduce still further the enclosure size.

So far as the reduction of spurious resonances is concerned, many of the small airtight enclosures currently available are filled with a fibrous damping medium. But it is doubtful if any of them use the velocity retardation effect at undamped frequencies other than by accident. Certainly none could use it to better effect than the labyrinth, where not only does it in this case provide a reduction of 2-6 times in the line length, but also in the other dimensions. The required volume has been shrunk from a gargantuan 100ft3 to a domesticated 5-5ft3. This is a remarkable achievement and with its possibilities for further improvement and application is of far greater importance than the other, coincidental, properties of Dr. Bailey's enclosure.

E. A. HARMAN
Chorley, Lancs.

SIX years ago, the writer tested a labyrinth cabinet almost identical to that described as an acoustic transmission line cabinet by Dr. Bailey in the October issue. Response curves taken under free-field conditions are shown in the Figure. Variations of cabinet and absorbent gave the same result of numerous resonances, as also did a folded horn. The curve for a totally enclosed cabinet of less than half the volume is included for comparison; provided the cabinet is not long and narrow, only the fundamental is present. These results were given in a lecture to the (then) Brit.I.R.E. on January 24th, 1962. Similar results were obtained many years ago by H. J. Leak and J. Boilingrove. The original labyrinth was essentially a resonant device, in which the resonances and anti-resonances were used to equalize the speaker output. It will be noted that the rate of cut off of the totally enclosed cabinet is similar to that of the absorbent-filled labyrinth, and can be varied if need be by design. When measured standing against a wall, as is done by Dr. Bailey, the response of the labyrinth may tail off more gradually, but this would apply also to the totally enclosed cabinet. If it is desired to tail off the bass gradually from...
a relatively high frequency, there are simpler and less resonant devices than the
labyrinth for doing this.

D. A. BARLOW
H. J. Leak & Co.,
London, W.3

The author replies:—I read Mr. Harman’s
letter with great interest as his theory is
borne out in practice. The velocity of
sound in wool is considerably slower than
in free-air, and is also slower than can be
accounted for by the difference between
isothermal and adiabatic compression of
the air. The wool mass is definitely
slowing down the wave front, but as there
cannot be perfect coupling between the
wool and the air the effect will be some-
what less than given by Mr. Harman’s
calculation. On the other hand the
wave will be slowed by the isothermal
effects of the wool as well, so the error in
assuming perfect coupling will be reduced.

As Mr. Harman surmises, the velocity
of sound can be slowed down very
greatly in a high packing density, but
unfortunately this gives rise to high back
pressure on the loudspeaker cone due to
the very restricted air passages. There is
therefore a maximum packing density
that can be used without giving a strangled
effect to the sound. The maximum den-
sity varies with speaker design and
cabinet design, but is far greater than the
density used in the cabinet described.

Regarding Mr. Barlow’s letter, I feel
that he must have misunderstood the
article. This may have been my fault, but
the cabinet design is based on a
transmission line (which should have
no reflections) having energy absorbing
properties at all but the lowest frequencies.
There is no desire to form a labyrinth
(dictionary definition—with many turn-
ings) at all. In fact every turning tends
to cause reflections and these are contrary
to what is required.

Without knowing what design of
cabinet Mr. Barlow used, it is difficult to
be analytical of his results. It may be of
interest, however, to note that cotton wool
has not proved to be a suitable material
from the tests that I carried out. I
would disagree that the rates of cut-off
are the same in the second figure, my
constructed asymptotes on the mean
rate of cut-off give the labyrinth a 5 dB
per active slower rate of fall.

Incidentally my own response curve
was taken with B. & K. equipment with
the speaker back to the wall of a 60 ft long
laboratory, the microphone being 1 ft in
front of the speaker midway between the
speaker and vent axes. A free-field
response was not given as this is intoler-
ably bass-heavy if a flat characteristic is
obtained. A floor and a wall were felt
necessary to simulate the effect of normal
domestic listening conditions.

If Mr. Barlow is still convinced that a
closed cabinet gives better performance,
then I will be only too happy to give him
a demonstration of the system’s capa-
bilities. A 25 c/s pure sine wave can be
generated acoustically by the system. A
very large enclosed cabinet would be
needed for this as the cone resonance is
increased by the enclosed air. Incident-
ally, the effective system resonance of the
transmission line speaker is below 15 c/s
for the design given. The cone reson-
ance as such may be above or below its
free-space figure depending on the sign
of the reflected reactance of the trans-
mission line. This factor, however, has
little significance as line loads the cone
resistively to such a degree that reactive
effects are negligible within the audible
range.

ARTHUR R. BAILEY